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Abstract: Crude oil is one of the most important types of energy and its prices have a great impact
on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for
investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity
and nonstationarity of crude oil prices, it is a challenging task for the traditional methodologies
of time series forecasting to handle it. To address this issue, in this paper, we propose a novel
approach that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian
learning (SBL), and addition, namely EEMD-SBL-ADD, for forecasting crude oil prices, following the
“decomposition and ensemble” framework that is widely used in time series analysis. Specifically,
EEMD is first used to decompose the raw crude oil price data into components, including several
intrinsic mode functions (IMFs) and one residue. Then, we apply SBL to build an individual
forecasting model for each component. Finally, the individual forecasting results are aggregated
as the final forecasting price by simple addition. To validate the performance of the proposed
EEMD-SBL-ADD, we use the publicly-available West Texas Intermediate (WTI) and Brent crude oil
spot prices as experimental data. The experimental results demonstrate that the EEMD-SBL-ADD
outperforms some state-of-the-art forecasting methodologies in terms of several evaluation criteria
such as the mean absolute percent error (MAPE), the root mean squared error (RMSE), the directional
statistic (Dstat), the Diebold–Mariano (DM) test, the model confidence set (MCS) test and running
time, indicating that the proposed EEMD-SBL-ADD is promising for forecasting crude oil prices.

Keywords: crude oil prices; time series forecasting; ensemble empirical mode decomposition (EEMD);
sparse Bayesian learning (SBL); energy forecasting

1. Introduction

Crude oil is one of the dominant sources of energy that powers the global economy. The demand
for crude oil will continue to increase, although its pace of growth is expected to slow gradually,
according to the British Petroleum (BP) energy outlook 2017 [1]. Due to the importance of crude
oil, many investors, governments, enterprises and even researchers pay much attention to the
crude oil prices. However, a variety of factors such as speculation activities, supply and demand,
technique development, geopolitical conflicts and wars can greatly produce effects on the prices of
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crude oil, making it show high nonlinearity and nonstationarity [2–5]. Therefore, it is a challenging
task to forecast the crude oil prices accurately.

Various models have emerged to try to forecast the crude oil prices as accurately as possible in
recent years. Generally speaking, the models can be roughly categorized into two groups: (1) statistical
and econometric models; and (2) artificial intelligence (AI) models [5]. Typical models in the
first group include vector autoregressive (VAR) models [6], the random walk model (RWM) [7,8],
the autoregressive integrated moving average (ARIMA) [9,10] and generalized autoregressive
conditional heteroskedasticity (GARCH) family models [11,12]. For example, Baumeister and Kilian
demonstrated that VAR models could achieve good results when forecasting crude oil prices at
short horizons [6]. Wang and Wu forecasted the volatility of crude oil prices using multivariate
and univariate GARCH-class models, and the results indicated that the multivariate models showed
better performance than univariate models [13]. Several ARIMA-GRARCHmodels for forecasting the
volatility of crude oil prices were studied in 11 markets, and the forecasting results indicated that
one of the models named APARCHoutperformed the others in most cases [14]. Some other research
focused on a multivariate analysis of crude oil prices. Kruse and Wegener used model averaging to
analyze time-varying persistence in real oil prices from more than one hundred and fifty variables
and found that the index of global economic activity by Kilian [15] was the only significant measure to
explain time-varying oil price persistence [16]. However, all the statistical and econometric models
have the limitation that they are built on the assumption that the time series of crude oil prices has
the characteristics of linearity and stationarity. Due to the high nonlinearity and nonstationarity, it is
usually hard for these models to be directly applied to crude oil price forecasting to achieve satisfactory
results. Therefore, the AI models have attracted increasing interest for crude oil price forecasting
because they can capture the intrinsic features of nonlinearity and nonstationarity that exist widely in
crude oil prices.

As for AI models, the most popular ones include the artificial neural network (ANN) and support
vector regression (SVR). Mirmirani and Li used VAR and ANN with the genetic algorithm (GA)
to forecast crude oil prices, and the results showed that ANN with GA significantly outperformed
VAR [17]. The authors utilized ANN and fuzzy regression (FR) to forecast crude oil prices in the
environment of noise, uncertainty and complexity, and the results indicated that the ANN was superior
to FR regarding mean absolute percentage error (MAPE) [18]. The study suggested that the proposed
ANN-GARCH approach was capable of improving the forecasting performance for both spot oil prices
and future oil prices [19]. To further study the flexibility of ANN for forecasting crude oil prices,
Jammazi and Aloui used the Haar a Trous Wavelet (HTW) decomposition and the multi-layer back
propagation neural network (MBPNN) for decomposition and model building, respectively [20]. In the
same research, the authors also analyzed the impacts of several activation functions and the levels
of input-hidden nodes in ANN. The experimental results demonstrated that the proposed method
performed better than the compared methods. Tang and Zhang built a multiple wavelet recurrent
neural network model for crude oil price forecasting [21]. Different from some AI models that only
consider the trend and the random components of crude oil prices, the model included gold prices
in the forecasting. The experimental results indicated that the proposed model can achieve high
forecasting accuracy.

From the perspective of machine learning, forecasting time series is a typical problem of
regression that predicts the real value output based on the corresponding input. Therefore, in theory,
any regression method in AI or the signal recovery method in signal processing can be applied
to forecasting time series. In 2001, a novel method called sparse Bayesian learning (SBL) that
used kernel-tricks was initially proposed as a machine learning method for both classification and
regression [22]. Such SBL with kernel-tricks is also known as the relevance vector machine (RVM),
a Bayesian competitor of the famous support vector machine (SVM). Later, it was found that SBL
without kernel-tricks is a powerful tool for signal recovery, sparse representation and compressive
sensing [23–26]. Therefore, SBL without kernel-tricks has the potential for forecasting crude oil prices.
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Owing to the nonlinearity and nonstationarity, it is hard to forecast the movement of crude oil
prices accurately using the raw price series directly. It has been reported that a novel “decomposition
and ensemble” framework can significantly improve the forecasting accuracy for complex time series.
In such a framework, the raw time series is first decomposed into several relatively simple components,
then, each component is predicted by a single forecasting model, and finally, the results by each
component are ensembled as the final results [27,28].

The commonly-used decomposition methods include wavelet decomposition (WD), independent
component analysis (ICA), empirical mode decomposition (EMD), its variant ensemble empirical
mode decomposition (EEMD), and so on, among which, EEMD is a popular one that has many
advantages [5]. For the ensemble, much research has shown that the addition operation can achieve
satisfactory results for time series forecasting. To further improve the forecasting efficiency and
effectiveness, in this paper, we aim at proposing a novel method integrating EEMD, SBL and simple
addition, namely, EEMD-SBL-ADD, to predict crude oil prices, following the “decomposition and
ensemble” framework. Specifically, the raw series of crude oil prices is first decomposed into several
components via EEMD. Then, SBL without kernel-tricks is applied to forecasting each component.
Finally, the predicted values of each component are added as the final results. The main contributions
of this paper are as follows: (1) A novel forecasting approach for crude oil prices that combines EEMD,
SBL and addition was proposed, following the well-known “decomposition and ensemble” framework.
To the best of our knowledge, this is the first time that SBL without kernel-tricks has been applied
to forecasting time series. (2) Extensive experiments were conducted on the publicly-accessible West
Texas Intermediate (WTI) and Brent spot crude oil prices, and it was shown that the proposed approach
outperformed several state-of-the-art methods for forecasting crude oil prices. (3) We further analyzed
the characteristics of SBL when applied to forecasting crude oil prices, such as running time, the impact
of the lag order and SBL’s parameter settings (scalar trade-off parameter and iteration number) on the
forecasting performance.

It is worth pointing out that the proposed EEMD-SBL-ADD is different from some previous work
on forecasting crude oil prices [5], wind power [29] and electricity price [30], where kernel-tricks are
adopted in the SBL framework. The proposed EEMD-SBL-ADD utilized SBL without kernel-tricks to
forecast each component decomposed from raw crude oil prices.

The rest of this paper is organized as follows. Section 2 briefly gives the description of EEMD
and SBL. Section 3 formulates the proposed EEMD-SBL-ADD method in detail. For the purpose of
evaluating the proposed method, experimental results are reported and discussed in Section 4. Finally,
Section 5 concludes this paper.

2. Preliminaries

2.1. Ensemble Empirical Mode Decomposition

EEMD is proposed on the basis of empirical mode decomposition (EMD) [31,32]. The latter
is a kind of adaptive signal decomposition method after Fourier spectral analysis and wavelet
analysis. It has been widely studied and applied to nonlinear and nonstationary signal or time
series. However, it was reported that the IMF components decomposed by EMD often result in the
“mode mixing” problem [33]. That is to say, the same IMF component contains a time series with
wide scale and different ranges or different IMF components contain time series with similar scales.
The consequence of “mode mixing” is that the IMF component no longer has the same characteristic
timescale and becomes a scale-dependent oscillation, thereby losing the original physical meaning.
To represent the signal better, EEMD was proposed to reduce “mode mixing” and extract the real
model effectively [32]. Its main idea is to eliminate “mode mixing” by the characteristics of the uniform
energy distribution and whole average meaning. Several white noises are added into the original time
series. Then, the EMD processing is performed many times individually. Finally, the average value is
obtained for the real mode. The steps of EEMD are as follows:
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Step 1: Specify the standard Gaussian white noises σ, the ensemble number I and a loop variable
i = 1;

Step 2: Add a Gaussian white noise ni(t) ∼ N(0, σ2) to the raw crude oil price series X(t) to
obtain the following new series as Equation (1):

Xi(t) = X(t) + ni(t), (1)

Step 3: Perform EMD on Xi(t) to obtain m IMFs cij(t)(j = 1, 2, · · · , m) and one residue ri(t) as
Equation (2):

Xi(t) =
m

∑
j=1

cij(t) + ri(t), (2)

where cij represents the j−IMF for the i-th trail and m is the number of IMFs, determined by the length
of crude oil price series T with m = blog2Tc − 1 [32].

Step 4: i = i + 1, if i > M, go to Step 5; otherwise, go to Step 2;
Step 5: Compute the j-th final IMF Cj(t) with corresponding IMFs in I trials as Equation (3):

Cj(t) =
1
I

I

∑
i=1

cij(t), j = 1, 2, · · · , m. (3)

Step 6: Compute the final residue r(t) as Equation (4):

r(t) = X(t)−
m

∑
j=1

Cj(t). (4)

It can be seen that with EEMD, the raw crude oil price series X(t) can be expressed as the sum
of m IMFs Cj(t)(j = 1, 2, · · · , m) and one residue r(t). The forms of the IMFs and the residue are
usually simpler than that of the raw crude oil price series. Now, the hard work of forecasting the
complex, nonlinear and nonstationary raw price data is divided into forecasting several relatively
simple components (m IMFs and one residue).

2.2. Sparse Bayesian Learning

Sparse Bayesian learning (SBL) was first proposed as a machine learning method that uses
kernel-tricks [22], and it has shown its power in various practical classification and regression
applications, such as image classification [34], object detection [35], oil production prediction
[36], automatic seizure detection [37], deception detecting [38], fault diagnosis [39], and so on.
However, later, SBL without kernel-tricks has also been demonstrated to be effective and efficient
on sparse signal recovery, sparse representation and compressive sensing [23,26,40]. In many ways,
signal recovery can be thought of as regression because their goals are to minimize the generalization
error. Therefore, in this paper, we use SBL without the kernel-trick to forecast crude oil prices. For the
convenience of expression, in the rest of this paper, SBL refers to sparse Bayesian learning without
kernel-tricks, unless otherwise stated.

Sparse signal recovery can be formulated by Equation (5):

y = Φw + ε, (5)

where Φ ∈ RN×M is a matrix with N samples and each sample has M features, y = [y1, y2, · · · , yN ]
T is

a vector of targets, ε is noise and w = [w1, w2, · · · , wM]T is the vector to be learned to represent the
weights of each column in Φ. The objective of SBL is to seek a vector of weights w that has many
entities of zeros, while it can still approximate the targets y accurately [23].
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In the SBL framework, it assumes the Gaussian likelihood model as Equation (6):

p(y|w; σ2) = (2πσ2)−
N
2 exp(− 1

2σ2 ||y−Φw||2). (6)

Under such conditions, the task of obtaining maximum likelihood estimates for w equals the
task of finding the minimum `2-norm solution to Equation (5). However, such solutions are usually
non-sparse. To find sparse solutions, SBL estimates a parameterized prior over weights from the data
by Equation (7):

p(w; γ) =
M

∏
i=1

(2πγi)
− 1

2 exp(−
w2

i
2γi

), (7)

where γ = [γ1, γ2, · · · , γM]T is a vector of M hyperparameters that controls the prior variance of
each weight. The procedure of estimating these hyperparameters from data consists of two steps:
(1) marginalizing over the weights and (2) performing the maximum likelihood optimization algorithm.
Interested readers can refer to [23] for more details.

The advantages of SBL are as follows:

1. Unlike many other sparse learning algorithms that require M� N in the matrix Φ in Equation (5),
SBL can still achieve satisfactory results even when M < N.

2. There are few parameters to set in SBL, and hence, it is not necessary to optimize parameters so
that the training procedure is very fast and the results are more robust.

3. The weights found by SBL can measure the importance of each feature on forecasting crude oil
prices, which improves the ability of interpretability of each feature.

4. Since SBL is suitable for resolving the multiple measurement vector model, it is easy to handle
forecasting crude oil prices at several horizons simultaneously.

3. The Proposed EEMD-SBL-ADD Approach

Inspired by the power of EEMD on signal preprocessing and the advantages of SBL on signal
recovery or regression, this paper proposes a novel approach that integrates EEMD, SBL and addition,
termed EEMD-SBL-ADD, for forecasting crude oil prices, following the “decomposition and ensemble”
framework. The approach is shown in Figure 1, which consists of three stages:

Stage 1: Decomposition. EEMD is applied to decompose the raw series of crude oil prices
X(t)(t = 1, 2, · · · , T) into two parts: (1) m = blog2Tc IMF components
Cj(t)(j = 1, 2, · · · , m); (2) one residue component r(t).

Stage 2: Individual forecasting. For each component from Stage 1, the data samples in the
component are divided into a training set and a test set. The SBL predictor is built on the
training set, and then, the predictor is applied to the test set.

Stage 3: Ensemble forecasting. The test results of all components from Stage 2 are aggregated by
simple addition as the final forecasting results.

The proposed EEMD-SBL-ADD is a typical strategy of “divide and conquer”, where the
complicated issue of forecasting the original crude oil prices is transformed to several relatively
simple issues of forecasting components independently. The EEMD-SBL-ADD first uses EEMD to
decompose the original crude oil price series into several components, and each component reflects
some characteristics of crude oil prices. For example, the first several IMFs reflect high-frequency
parts, while the last several IMFs and the residue reflect the low-frequency parts of the crude oil
prices. Secondly, the EEMD-SBL-ADD builds a forecasting model for each single component using
SBL, and then, the forecasting model can predict the test data of each single component. Finally,
the predicted values from each component can be aggregated as the final forecasting results of crude oil
prices. All these characteristics make it possible for the EEMD-SBL-ADD to improve the performance
for forecasting crude oil prices.
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Figure 1. Flowchart for the proposed approach. EEMD: ensemble empirical mode decomposition;
IMF: intrinsic mode function; SBL: sparse Bayesian learning.

4. Experimental Results

4.1. Data Description

To validate the performance of the proposed EEMD-SBL-ADD, this paper used two
publicly-accessed crude oil price series, i.e., West Texas Intermediate (WTI) crude oil spot prices
and Brent crude oil spot prices, for their representative significance in international crude oil markets.
For WTI data series, we used the daily close prices from 2 January 1986–2 April 2018, with a total
8132 samples, as experimental data. Among the samples, the first 6506 ones accounting for 80%
from 2 January 1986–13 October 2011 were used as training samples, and the remaining 1626 ones
accounting for 20% from 14 October 2011–2 April 2018 were used as testing samples. Meanwhile,
for Brent data series, 7836 samples of daily close prices from 20 May 1987–2 April 2018 were used.
The dataset was also split as done for the WTI dataset: the first 80% of samples for training and the
remaining 20% for testing. The original crude oil prices and corresponding components decomposed
by EEMD of WTI and Brent are shown in Figures 2 and 3, respectively.

4.2. Evaluation Criteria

In order to evaluate the model from multiple views, we selected four evaluation indexes: the mean
absolute percent error (MAPE), the root mean squared error (RMSE), the directional statistic (Dstat)
and the Diebold–Mariano (DM) statistic. At first, we used RMSE and MAPE to evaluate the prediction
accuracy. MAPE and RMSE are defined as Equations (8) and (9), respectively:

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣, (8)

RMSE =
1
n

√
n

∑
t=1

(yt − ŷt)
2, (9)

where yt is the actual value, ŷt is the predicted value at time t and n is the total number of test sets.
Then, we selected the directional statistic (Dstat) to evaluate the ability of direction prediction.

Dstat is defined as Equation (10):

Dstat =
1
n

n

∑
t=1

at × 100%, (10)
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where at =

{
1, (yt − yt−1)(ŷt − yt−1) ≥ 0;
0, otherwise.

.

Obviously, the lower the MAPE and RMSE values, the higher the prediction accuracy is.
In contrast, the higher the Dstat value, the more accurate the direction prediction of the model is.
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Figure 2. The original data and corresponding components decomposed by EEMD of West Texas
Intermediate (WTI) crude oil prices. IMF: intrinsic mode function.
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Figure 3. The original data and corresponding components decomposed by EEMD of Brent crude oil
prices. IMF: intrinsic mode function.

Next, we utilized the Diebold–Mariano (DM) statistic to compare the prediction errors of two
models, which is defined as Equation (11):

S =
d̄√

Var(d̄)
, (11)

where d̄ = 1
n

n
∑

t=1
dt, dt = (yt − ŷ1t)

2 − (yt − ŷ2t)
2, Var(d̄) = 1

n (γ0 + 2
n−1
∑

k=1
γk) and γk = cov(dt, dt−k).

ŷ1t represents the predicted values obtained by the first model at time t, while ŷ2t is obtained by the
second model. The original assumption of this statistic is that the two models have equal prediction
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accuracy. When the statistic is negative, the first model is statistically advantageous compared to the
second one.

Finally, since the multiple application of the DM test for a set of pairwise comparisons provides
biased p-values, the model confidence set (MCS) was applied to further demonstrate SBL’s superiority
to other models on crude oil price forecasting. The MCS can be used to select the optimal model from
several models for prediction, and the results are robust [41].

To obtain more data to calculate the p-value of the statistics, the MCS performs a bootstrap
on the prediction sequence. For the j-th models, given the size of bootstrapped sample T, the t-th
bootstrapped sample has the loss defined as Equation (12):

Lj,t =
1
T

h+T

∑
i=h+1

|yi − ŷi|. (12)

Given a set M0 = {mi, i = 1, 2, · · · , n} that contains n models, for any two models j and k,
the relative values of the loss between these two models can be defined as Equation (13):

dj,k,t = Lj,t − Lk,t. (13)

With the above definitions, the set of superior models can be defined as Equation (14):

M∗ ≡ mj ∈ M0 : E(dj,k,t) ≤ 0, ∀mk ∈ M0. (14)

where E(.) represents the average value.
The MCS performs a series of significant tests in M0. Each time, the worst prediction model in the

set is eliminated. In each test, the hypothesis is the null hypothesis of equal predictive ability (EPA),
defined as Equation (15):

H0 : E(dj,k,t) = 0, ∀mj, mk ∈ M ⊂ M0. (15)

The MCS mainly relies on the equivalence test and elimination criteria. The specific process is
as follows:

Step 1: Assuming M = M0, at the level of significance α, use the equivalence test to test the null
hypothesis H0,M;

Step 2: If it accepts the null hypothesis, then M∗1−α = M will be defined; otherwise, the model
that rejects the null hypothesis from M will be eliminated by the elimination criteria.
The elimination will not stop until there are no longer any models rejecting the null
hypothesis in the set M. At last, the models in the M∗1−α are thought as surviving models.

The MCS has two kinds of statistics that can be defined as Equations (16)–(18).

TR = max
j,k∈M

|dj,k|√
var(dj,k)

, (16)

TSQ = max
j,k∈M

(dj,k)
2

var(dj,k)
, (17)

dj,k =
1
T

h+T

∑
t=h+1

dj,k,t. (18)

The p-value can be computed with these statistics, and then, it can be used to determine the
elimination or survival of the models. When the p-value of one model is less than the significance level
α, this model will be eliminated; otherwise, it will survive. The larger the p-value, the more accurate
the prediction of the model. When the p-value is equal to one, it indicates that the model is the optimal
forecasting model.
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4.3. Experimental Settings

To demonstrate the power of SBL on crude oil price forecasting, we firstly conducted experiments
on raw series, and this is the so-called single model. We compared SBL with three very popular
models of time series forecasting, i.e., one statistical model, ARIMA, and two AI models, ANN and
LSSVR. Then, we ran ensemble models on the decomposed signals. To set up the stage for a
fair comparison, we used addition (ADD) to aggregate the individual forecasting result of each
component as the final result. We compared the proposed EEMD-SBL-ADD with the other seven
ensemble models (EEMD-ARIMA-ADD, EEMD-ANN-ADD, EEMD-LSSVR-ADD, EMD-SBL-ADD,
EMD-ARIMA-ADD, EMD-ANN-ADD and EMD-LSSVR-ADD) to further validate the performance of
the proposed approach. Among the ensemble models, the ones with SBL, ANN or LSSVR are called
AI-based ensemble models in this paper.

For SBL, we set 0.0004 and 600 as the values of the scalar trade-off parameter for balancing sparsity
and data fit and the maximum number of iterations, respectively. For ARIMA, we needed to determine
the values of the three parameters (p − d − q). d represents the number of times a nonstationary
sequence turns into a stationary sequence. p and q represent the autocorrelation coefficient and partial
correlation coefficient, respectively. We selected the optimal values of p and q through the AIC (Akaike
information criterion) rule. For the parameters of ANN, we selected the BP (back propagation) neural
network and used a four-layer network with two hidden layers. The number of hidden layer nodes
was set to seven, and the maximum number of training steps was set to 10,000. For LSSVR, we chose
the very popular RBF as the kernel of the model. Then, we needed to select two important parameters,
including the regularization parameter γ and kernel parameter σ2. We used grid search to find the
optimal values for both parameters, following [28,42].

Data normalization is an important work for AI-based time series forecasting. On the one hand,
normalization can accelerate finding the optimal solution for gradient descent; on the other hand,
it allows the characteristics of different dimensions to be comparable in numerical terms and may
improve accuracy. To set up a fair comparison, in the paper, we used a frequently-used normalization
method (the Min-Max normalization) for AI-based predictors. Note that ARIMA does not need
normalization. The normalization formula is as Equation (19):

ynorm =
y− ymin

ymax − ymin
, (19)

where ymax and ymin are the maximum and minimum values of the original dataset, respectively. y and
ynorm are the raw values and the normalized values. The normalization maps the raw values in the
range of [0,1].

Finally, we needed to do the inverse normalization after we obtained the predicted values by
normalization. The formula is as Equation (20):

ŷ = ŷnorm × (ymax − ymin) + ymin, (20)

where ŷnorm is the predicted value before inverse normalization and ŷ is the final predicted value
we need.

In addition, we performed multi-step-ahead prediction and selected horizons of 1, 2, 3, 4, 5 and 6
as experimental objects. If we want to predict the value of yt+h with a time series yt, (t = 1, 2, 3, · · · , T),
it can be formulated as Equation (21):

ŷt+h = f (yt, yt−1, yt−2, · · · , yt−(l−1)), (21)

where ŷt+h represents the predicted value of yt+h, yt represents the actual value at time tand l is the
lag order. As suggested by [43], we set six as the lag order in these experiments. For the MCS, we set
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0.2 as the level of significance α and 5000 as the number of bootstrapped samples. Meanwhile, we used
“stationary” as the boot type.

All the experiments were conducted by MATLAB R2016b on a 64-bit Windows 10 professional
edition with an i7-7820X CPU @3.6 GHz and 32 GB RAM.

4.4. Results and Analysis

4.4.1. Single Models

The MAPE values for single models on WTI and Brent crude oil prices are shown in Table 1.
Among the models, SBL achieved the lowest (the best) values in 11 out of 12 cases on both markets,
while ARIMA, ANN and LSSVR achieved the highest (the worst) values in 7/12, 3/12 and 4/12 cases
(note that some models achieved the same highest values at some horizons). The results achieved
by the statistical model ARIMA were slightly higher than, but very close to those by ANN or LSSVR
in most cases. For each model, with the increase of the horizon, the corresponding MAPE values
were increasing.

Table 1. The MAPE values by different single models on WTI and Brent crude oil prices.

Horizon
Model

SBL ARIMA ANN LSSVR

W
TI

One 0.0154 0.0152 0.0151 0.0204
Two 0.0206 0.0210 0.0210 0.0210

Three 0.0255 0.0260 0.0261 0.0257
Four 0.0295 0.0303 0.0302 0.0297
Five 0.0329 0.0340 0.0332 0.0334
Six 0.0364 0.0379 0.0370 0.0367

Br
en

t

One 0.0134 0.0136 0.0135 0.0144
Two 0.0198 0.0201 0.0200 0.0205

Three 0.0250 0.0255 0.0251 0.0255
Four 0.0291 0.0299 0.0293 0.0296
Five 0.0328 0.0337 0.0334 0.0333
Six 0.0360 0.0372 0.0373 0.0366

As another level performance of forecasting, the RMSE values of all the models at different
horizons on WTI and Brent crude oil prices are shown in Table 2. It can be seen that SBL outperformed
all other models in all cases, while ARIMA obtained the worst values in 9 out of 12 cases, showing that
the ARIMA had poor power for forecasting raw crude oil prices. For ANN and LSSVR, they achieved
very close results, and neither of them was always superior to the other one.

Table 2. The RMSE values by different single models on WTI and Brent crude oil prices.

Horizon
Model

SBL ARIMA ANN LSSVR

W
TI

One 1.2622 1.2770 1.2757 1.2925
Two 1.7153 1.7454 1.7387 1.7430

Three 2.0943 2.1415 2.1282 2.1097
Four 2.4041 2.4731 2.4303 2.4146
Five 2.6781 2.7717 2.6823 2.6917
Six 2.9327 3.0548 2.9714 2.9489
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Table 2. Cont.

Horizon
Model

SBL ARIMA ANN LSSVR

Br
en

t

One 1.1961 1.2097 1.1974 1.2659
Two 1.7366 1.7669 1.7377 1.7885

Three 2.1525 2.2042 2.1677 2.1929
Four 2.4895 2.5643 2.4954 2.5246
Five 2.7817 2.8837 2.8257 2.8179
Six 3.0521 3.1866 3.1539 3.0941

For the directional prediction, it can be seen from Table 3 that none of the models can always
outperform any other ones. Amongst the models, SBL, ARIMA, ANN and LSSVR obtained the highest
values on 4/12, 2/12, 4/12 and 3/12 cases, respectively (ARIMA and ANN achieved the highest
values simultaneously at Horizon 4 on Brent crude oil prices). The results also demonstrated that
the performance of single models was not stable when forecasting the direction of crude oil prices.
Another interesting finding was that the highest value in all cases was 0.5341, while the lowest value
was 0.4803, which were very similar to the result of a random guess. Therefore, it was hard for
single models to achieve a satisfactory directional prediction, and the hidden reason was probably the
nonlinearity and nonstationarity of the complex crude oil prices.

Table 3. The Dstat values by different single models on WTI and Brent crude oil prices.

Horizon
Model

SBL ARIMA ANN LSSVR

W
TI

One 0.4926 0.4803 0.4945 0.5251
Two 0.5178 0.5068 0.5117 0.5172

Three 0.4883 0.4963 0.5006 0.4988
Four 0.4926 0.5000 0.5074 0.5018
Five 0.4945 0.4889 0.4988 0.4994
Six 0.4994 0.4859 0.4902 0.4920

Br
en

t

One 0.5086 0.5182 0.5341 0.5067
Two 0.5061 0.5010 0.5003 0.4978

Three 0.4965 0.4933 0.4952 0.5080
Four 0.4914 0.4990 0.4990 0.4978
Five 0.4876 0.5016 0.4837 0.4888
Six 0.5041 0.4933 0.4959 0.4971

This paper also used the DM test to validate the superiority of the SBL from the viewpoint of
statistics, as the statistics and p-values (in brackets) shown in Tables 4 and 5. The results further
statistically confirmed the above conclusions. First, the SBL statistically outperformed ARIMA,
ANN, and LSSVR, and the corresponding p-values were far below 0.1 in 21 out of 36 cases. Second,
when we chose the statistical model ARIMA as the benchmark model; ARIMA was statistically
shown to underperform compared to the the AI models, showing that the latter were more powerful
for forecasting nonlinear and nonstationary crude oil prices. Finally, regarding ANN and LSSVR,
the results showed that neither of them could significantly outperform the other one.

We further report the results of the MCS test by single models on both WTI and Brent crude oil
prices, as shown in Table 6. It can be seen from this table that the values of SBL were always 1.0000,
showing that as a single model, SBL outperformed any other single models in all cases. This confirmed
the results by the DM test.

From the above analyses, it has been shown that the SBL was probably the most powerful model
among all models, in terms of MAPE and RMSE. Therefore, in this paper, we chose SBL as the
individual forecasting method in the proposed approach. Furthermore, the performance of directional
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forecasting of single models was so poor that the accuracy was very close to a random guess, and hence,
this paper used the “decomposition and ensemble” to improve the forecasting performance.

Table 4. The Diebold–Mariano (DM) test results for single models on WTI crude oil prices.

Benchmark One-Step-Ahead Two-Step-Ahead Three-Step-Ahead

Tested model ARIMA ANN LSSVR ARIMA ANN LSSVR ARIMA ANN LSSVR

SBL −3.05 −3.25 −3.13 −2.53 −3.04 −2.87 −2.22 −2.90 −1.53
(0.0023) (0.0012) (0.0018) (0.0116) (0.0024) (0.0042) (0.0266) (0.0038) (0.1252)

ARIMA 0.31 −1.33 0.55 0.13 0.60 1.17
(0.7573) (0.1839) (0.5795) (0.8952) (0.5494) (0.2424)

ANN −1.42 −0.36 1.21
(0.1558) (0.7199) (0.2279)

Benchmark Four-Step-Ahead Five-Step-Ahead Six-Step-Ahead

Tested model ARIMA ANN LSSVR ARIMA ANN LSSVR ARIMA ANN LSSVR

SBL −2.09 −1.46 −0.95 −1.99 −0.19 −1.08 −1.97 −1.71 −1.00
(0.0365) (0.1435) (0.3432) (0.0473) (0.8508) (0.2811) (0.0492) (0.0878) (0.3186)

ARIMA 1.20 1.48 2.06 1.48 1.29 1.50
(0.2316) (0.1387) (0.0397) (0.1398) (0.1662) (0.1331)

ANN 0.74 −0.40 0.90
(0.4619) (0.6924) (0.3704)

Table 5. The DM test results for single models on Brent crude oil prices.

Benchmark One-Step-Ahead Two-Step-Ahead Three-Step-Ahead

Tested model ARIMA ANN LSSVR ARIMA ANN LSSVR ARIMA ANN LSSVR

SBL −2.04 −0.28 −7.04 −1.73 −0.17 −4.06 −1.66 −1.31 −2.77
(0.0412) (0.7778) (0.0000) (0.0839) (0.8658) (0.0001) (0.0969) (0.1907) (0.0057)

ARIMA 1.54 −4.31 1.74 −0.91 0.95 0.3096
(0.1235) (0.0000) (0.0819) (0.3651) (0.3425) (0.7569)

ANN −6.11 −3.33 −1.82
(0.0000) (0.0009) (0.0692)

Benchmark Four-Step-Ahead Five-Step-Ahead Six-Step-Ahead

Tested model ARIMA ANN LSSVR ARIMA ANN LSSVR ARIMA ANN LSSVR

SBL −1.56 −0.46 −1.91 3.52 −1.33 −1.56 −1.47 −1.75 −1.49
(0.1188) (0.6433) (0.0558) (0.0004) (0.1849) (0.1186) (0.1423) (0.0811) (0.1355)

ARIMA 1.36 0.74 −3.41 −3.43 0.29 0.94
(0.1744) (0.4577) (0.0007) (0.0006) (0.7885) (0.3451)

ANN −1.86 0.25 1.04
(0.0631) (0.8002) (0.2970)

Table 6. The model confidence set (MCS) test results by different single models on WTI and Brent
crude oil prices.

Model

Horizon

One Two Three Four Five Six

TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ

W
T

I

LSSVR 0.0006 0.0016 0.0114 0.0114 0.0970 0.0970 0.5604 0.5604 0.3048 0.3048 0.1390 0.1390
ANN 0.0006 0.0004 0.0034 0.0020 0.0118 0.0028 0.0254 0.0058 0.0258 0.0202 0.0112 0.0134

ARIMA 0.0006 0.0016 0.0034 0.0040 0.0118 0.0128 0.0254 0.0322 0.0258 0.0206 0.0112 0.0134
SBL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Br
en

t LSSVR 0.0000 0.0000 0.0004 0.0018 0.0394 0.0322 0.2228 0.1744 0.1050 0.0964 0.0584 0.0584
ANN 0.5880 0.5880 0.4988 0.4988 0.5806 0.5806 0.7512 0.7512 0.1050 0.0964 0.0488 0.0268

ARIMA 0.0034 0.0070 0.0564 0.0486 0.0394 0.0182 0.0182 0.0124 0.0370 0.0356 0.0288 0.0208
SBL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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4.4.2. Ensemble Models

Regarding the ensemble models (i.e., EEMD-SBL-ADD, EEMD-ARIMA-ADD, EEMD-ANN-ADD,
EEMD-LSSVR-ADD, EMD-SBL-ADD, EMD-ARIMA-ADD, EMD-ANN-ADD, and EMD-LSSVR-ADD),
Tables 7–10 show the experimental results in terms of MAPE, RMSE and Dstat on the crude oil prices
from WTI and Brent, respectively. Note that since all the models use addition (ADD) in Stage 3
(ensemble forecasting), we removed the term “ADD: in the tables to save space. Therefore, the model
SBL under EEMD shown in the table heading refers to the proposed EEMD-SBL-ADD, and the rest
can be done in the same manner.

From the MAPE and RMSE results shown in Tables 7 and 8, some interesting conclusions can
be drawn. First, the proposed EEMD-SBL-ADD significantly outperformed any other models except
for the MAPE and RMSE values of three-step-ahead forecasting on WTI crude oil prices and the
MAPE value of one-step-ahead forecasting on Brent crude oil prices, where EEMD-LSSVR-ADD and
EMD-SBL-ADD were slightly better than EEMD-SBL-ADD, respectively. Second, for the methods
of decomposition, it was clear that the models with EEMD were better than the corresponding
models with EMD in most cases, showing that EEMD had more advantages over EMD for forecasting
prices. Third, the models with AI or machine learning (SBL, ANN and LSSVR) were very superior to
those with statistical models (ARIMA). The possible reason is that as a linear model, ARIMA cannot
capture the nonlinearity and nonstationarity of the crude oil prices. Fourth, among the AI models,
SBL outperformed the other models (ANN and LSSVR) in most cases, indicating its power for
forecasting crude oil prices. Finally, the ensemble models with AI greatly improved the results
of MAPE and RMSE when compared with their corresponding single models, which showed the
superior capability of AI models with the “decomposition and ensemble” for forecasting crude oil
prices. In contrast, the EEMD-ARIMA-ADD could not improve the forecasting performance in terms
of MAPE and RMSE when compared with the single ARIMA model.

Regarding directional forecasting, the Dstat values of ensemble models were in the range of
0.5016–0.8149 (shown in Table 9), which were all higher than a random guess and showed that
ensemble models had a higher capability of directional forecasting compared with single models.
Specifically, the proposed EEMD-SBL-ADD outperformed other models in 11 out of 12 cases, except that
EEMD-ANN-ADD achieved slightly better results at Horizon 6 on WTI crude oil prices. In contrast,
the performance of directional prediction by ARIMA had been shown to be the poorest in most cases,
which further confirmed the weakness of ARIMA on forecasting the nonlinear and nonstationary crude
oil prices. The results also demonstrated that, at a larger horizon, the performance of the forecasting
models tended to decrease. This is probably attributable to the information loss with the increasing
horizon.

As far as the statistical test, the results of the DM test by the ensemble methods on WTI
and Brent are shown in Tables 10 and 11 respectively, statistically confirming the above results.
Firstly, the superiority of the proposed EEMD-SBL-ADD in both markets was validated from the
perspective of statistics. Specifically, the p-values of the EEMD-SBL-ADD were far below 0.01 in
80 out of 84 cases. This demonstrates that the proposed EEMD-SBL-ADD performed statistically
better than other benchmark models at a confidence level of 99.9% in most cases when it was
treated as the model of testing the target. Furthermore, regarding the predictor in the ensemble
approaches, when the decomposition tool was fixed, the p-values of SBL were far below 0.05 in most
cases, showing repeatedly that SBL outperformed the other forecasting models significantly. Second,
the models with EEMD have been tested to outperform their counterparts with EMD respectively,
revealing statistically that as a decomposition tool, EEMD had advantages over EMD for crude oil
price forecasting. Finally, with a fixed decomposition tool, EEMD or EMD, the ARIMA-based models
were still statistically demonstrated to underperform with respect to other AI-models. It confirmed
that for ARIMA, the ability to capture the nonlinearity and nonstationarity from crude oil prices was
poor.



www.manaraa.com

Energies 2018, 11, 1882 15 of 23

Table 7. The MAPE values by different ensemble models on WTI and Brent crude oil prices. EEMD,
ensemble empirical mode decomposition.

Horizon

Model EEMD EMD

SBL ARIMA ANN LSSVR SBL ARIMA ANN LSSVR

W
T

I

One 0.0086 0.0353 0.0124 0.0097 0.0092 0.1191 0.0348 0.0243
Two 0.0099 0.0593 0.0457 0.0103 0.0110 0.1928 0.0268 0.0258

Three 0.0106 0.0701 0.0133 0.0104 0.0135 0.2096 0.0230 0.0277
Four 0.0106 0.0782 0.0154 0.0110 0.0150 0.2232 0.0218 0.0289
Five 0.0116 0.0856 0.0286 0.0123 0.0158 0.2314 0.0178 0.0304
Six 0.0129 0.0929 0.0136 0.0130 0.0171 0.2425 0.0194 0.0322

Br
en

t

One 0.0086 0.0334 0.0169 0.0114 0.0083 0.1073 0.0321 0.0248
Two 0.0095 0.0569 0.0184 0.0121 0.0098 0.1833 0.0581 0.0258

Three 0.0101 0.0660 0.0112 0.0125 0.0129 0.2242 0.0408 0.0272
Four 0.0102 0.0736 0.0142 0.0132 0.0144 0.2581 0.0410 0.0282
Five 0.0112 0.0833 0.0174 0.0145 0.0155 0.2849 0.0585 0.0295
Six 0.0125 0.0940 0.0224 0.0152 0.0171 0.3075 0.0469 0.0310

Table 8. The RMSE values by different ensemble models on WTI and Brent crude oil prices.

Horizon

Model EEMD EMD

SBL ARIMA ANN LSSVR SBL ARIMA ANN LSSVR

W
TI

One 0.6867 2.2459 0.9627 0.7601 0.786 8.8892 4.6651 2.3228
Two 0.7984 3.7860 3.2011 0.8345 0.9422 14.3750 2.6361 2.3910

Three 0.8681 4.5598 1.0210 0.8451 1.1412 15.6351 1.9233 2.4745
Four 0.8549 5.1762 1.1329 0.8974 1.2255 16.6664 1.9212 2.5298
Five 0.9414 5.7522 2.0503 1.0091 1.2729 17.2897 1.7943 2.5962
Six 1.0577 6.3135 1.0787 1.0658 1.3787 18.1314 1.6673 2.6799

Br
en

t

One 0.7019 2.2449 1.5239 0.9134 0.7401 7.1377 2.6029 1.8831
Two 0.7955 3.8126 1.6506 0.9656 0.8712 12.1492 4.7512 1.9249

Three 0.8517 4.5672 1.1563 0.9888 1.1290 14.8362 3.2721 2.0190
Four 0.8508 5.2287 1.3886 1.0450 1.2422 17.0602 3.2176 2.0835
Five 0.9445 5.9699 1.4085 1.1570 1.3467 18.8130 4.6186 2.1778
Six 1.0575 6.7385 1.7064 1.2306 1.4995 20.2922 3.6614 2.3030

Table 9. The Dstat values by different ensemble models on WTI and Brent crude oil prices.

Horizon

Model EEMD EMD

SBL ARIMA ANN LSSVR SBL ARIMA ANN LSSVR

W
TI

One 0.8149 0.6002 0.7921 0.7909 0.797 0.5308 0.7202 0.6784
Two 0.7755 0.5412 0.6316 0.7515 0.7626 0.5240 0.6796 0.6439

Three 0.7509 0.5498 0.7171 0.7435 0.6888 0.5234 0.6611 0.6273
Four 0.7435 0.5412 0.6784 0.7355 0.6734 0.5228 0.6648 0.6125
Five 0.7103 0.5412 0.6218 0.6900 0.6531 0.5228 0.6925 0.5996
Six 0.6876 0.5418 0.6888 0.6753 0.6415 0.5221 0.6279 0.5695

Br
en

t

One 0.7862 0.5897 0.7198 0.7326 0.8092 0.5124 0.7077 0.6592
Two 0.7556 0.5201 0.6962 0.7109 0.7677 0.5022 0.6892 0.6216

Three 0.7243 0.5303 0.7020 0.7007 0.6726 0.5016 0.6688 0.5877
Four 0.7307 0.5252 0.6809 0.6796 0.6516 0.5022 0.6209 0.5833
Five 0.7205 0.5144 0.6656 0.6516 0.6433 0.5022 0.6158 0.5673
Six 0.6841 0.5035 0.6452 0.6535 0.6171 0.5016 0.6043 0.5514
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Table 10. DM test results for ensemble models on WTI crude oil prices.

Tested Model Benchmark Model

EEMD-ARIMA EEMD-ANN EEMD-LSSVR EMD-SBL EMD-ARIMA EMD-ANN EMD-LSSVR

O
ne

-s
te

p-
ah

ea
d EEMD-SBL −33.43(0.0000) −13.28(0.0000) −6.01(0.0000) −4.78(0.0000) −70.32(0.0000) −9.79(0.0000) −10.51(0.0000)

EEMD-ARIMA 29.44(0.0000) 31.97(0.0000) 31.05(0.0000) −62.06(0.0000) −7.62(0.0000) −0.71(0.4764)
EEMD-ANN 9.46(0.0000) 6.68(0.0000) −69.82(0.0000) −9.66(0.0000) −9.81(0.0000)
EEMD-LSSVR −1.20(0.2313) −70.35(0.0000) −9.75(0.0000) −10.33(0.0000)
EMD-SBL −70.38(0.0000) −9.72(0.0000) −10.19(0.0000)
EMD-ARIMA 28.62(0.0000) 70.94(0.0000)
EMD-ANN 9.45(0.0000)

Tw
o-

st
ep

-a
he

ad

EEMD-SBL −19.92(0.0000) −16.39(0.0000) −3.06(0.0023) −6.29(0.0000) −42.11(0.0000) −6.65(0.0000) −6.35(0.0000)
EEMD-ARIMA 4.59(0.0000) 19.79(0.0000) 19.46(0.0000) −36.26(0.0000) 6.13(0.0000) 7.96(0.0000)
EEMD-ANN 16.40(0.0000) 15.73(0.0000) −38.52(0.0000) 3.97(0.0001) 6.09(0.0000)
EEMD-LSSVR −4.46(0.0000) −42.12(0.0000) −6.62(0.0000) −6.31(0.0000)
EMD-SBL −42.10(0.0000) −6.38(0.0000) −6.03(0.0000)
EMD-ARIMA 43.37(0.0000) 43.24(0.0000)
EMD-ANN 6.32(0.0000)

Th
re

e-
st

ep
-a

he
ad EEMD-SBL −15.42(0.0000) −5.24(0.0000) 1.49(0.1360) −9.20(0.0000) −32.48(0.0000) −6.70(0.0000) −5.17(0.0000)

EEMD-ARIMA 15.09(0.0000) 15.43(0.0000) 14.72(0.0000) −28.66(0.0000) 11.30(0.0000) 5.91(0.0000)
EEMD-ANN 7.81(0.0000) −3.04(0.0024) −32.48(0.0000) −6.48(0.0000) −5.05(0.0000)
EEMD-LSSVR −8.67(0.0000) −32.49(0.0000) −6.85(0.0000) −5.24(0.0000)
EMD-SBL −32.44(0.0000) −5.43(0.0000) −4.63(0.0000)
EMD-ARIMA 32.57(0.0000) 33.18(0.0000)
EMD-ANN −3.71(0.0000)

Fo
ur

-s
te

p-
ah

ea
d EEMD-SBL −12.19(0.0000) −8.59(0.0000) −10.33(0.0000) −10.72(0.0000) −27.30(0.0000) −4.87(0.0000) −5.13(0.0000)

EEMD-ARIMA 11.95(0.0000) 11.74(0.0000) 11.84(0.0000) −22.17(0.0000) 10.30(0.0000) 4.32(0.0000)
EEMD-ANN −2.61(0.0091) −2.12(0.0340) −27.23(0.0000) −4.17(0.0000) −4.97(0.0000)
EEMD-LSSVR 0.56(0.5760) −27.26(0.0000) −3.45(0.0006) −4.77(0.0000)
EMD-SBL −27.24(0.0000) −3.60(0.0003) −4.80(0.0000)
EMD-ARIMA 27.57(0.0000) 28.05(0.0000)
EMD-ANN −5.18(0.0000)

Fi
ve

-s
te

p-
ah

ea
d EEMD-SBL −10.59(0.0000) −8.67(0.0000) −5.07(0.0000) −8.74(0.0000) −23.86(0.0000) −2.91(0.0000) −4.29(0.0000)

EEMD-ARIMA 9.31(0.0000) 10.54(0.0000) 10.37(0.0000) −18.88(0.0000) 9.21(0.0000) 7.85(0.0000)
EEMD-ANN 8.43(0.0000) 6.35(0.0000) −23.49(0.0000) 1.41(0.1590) −2.06(0.0394)
EEMD-LSSVR −7.29(0.0000) −23.86(0.0000) −2.76(0.0058) −4.21(0.0000)
EMD-SBL −23.81(0.0000) −1.99(0.0467) −3.76(0.0002)
EMD-ARIMA 24.28(0.0000) 24.23(0.0000)
EMD-ANN −5.73(0.0000)

Si
x-

st
ep

-a
he

ad

EEMD-SBL −9.47(0.0000) −1.33(0.1822) −0.52(0.6007) −7.33(0.0000) −21.36(0.0000) −3.80(0.0002) −4.13(0.0000)
EEMD-ARIMA 9.50(0.0000) 9.45(0.0000) 9.27(0.0000) −16.61(0.0000) 8.92(0.0000) 7.50(0.0000)
EEMD-ANN 0.78(0.4362) −7.16(0.0000) −21.34(0.0000) −3.67(0.0003) −4.09(0.0000)
EEMD-LSSVR −7.25(0.0190) −21.36(0.0000) −3.79(0.0002) −4.12(0.0000)
EMD-SBL −21.31(0.0000) −2.02(0.0433) −3.60(0.0003)
EMD-ARIMA 21.50(0.0000) 21.64(0.0000)
EMD-ANN −4.20(0.0000)
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Table 11. DM test results for ensemble models on Brent crude oil prices.

Tested Model Benchmark Model

EEMD-ARIMA EEMD-ANN EEMD-LSSVR EMD-SBL EMD-ARIMA EMD-ANN EMD-LSSVR

O
ne

-s
te

p-
ah

ea
d EEMD-SBL −33.31(0.0000) −14.52(0.0000) −12.88(0.0000) −1.41(0.1585) −55.10(0.0000) −20.27(0.0000) −22.99(0.0000)

EEMD-ARIMA 13.17(0.0000) 31.26(0.0000) 31.31(0.0000) −51.00(0.0000) −5.2275(0.0000) 8.17(0.0000)
EEMD-ANN 12.66(0.0000) 13.43(0.0000) −52.51(0.0000) −12.81(0.0000) −6.27(0.0000)
EEMD-LSSVR 6.29(0.0000) −55.12(0.0000) −19.63(0.0000) −21.42(0.0000)
EMD-SBL −55.11(0.0000) −20.23(0.0000) −23.31(0.0000)
EMD-ARIMA 64.56(0.0000) 58.35(0.0000)
EMD-ANN 16.48(0.0000)

Tw
o-

st
ep

-a
he

ad

EEMD-SBL −19.93(0.0000) −8.60(0.0000) −8.32(0.0000) −2.30(0.0213) −33.57(0.0000) −12.80(0.0000) −15.20(0.0000)
EEMD-ARIMA 6.39(0.0000) 18.54(0.0000) 18.66(0.0000) −32.84(0.0000) −10.20(0.0000) 4.60(0.0000)
EEMD-ANN 7.85(0.0000) 7.87(0.0000) −32.99(0.0000) −11.33(0.0000) −2.89(0.0039)
EEMD-LSSVR 2.71(0.0067) −33.58(0.0000) −12.71(0.0000) −14.46(0.0000)
EMD-SBL −33.55(0.0000) −12.72(0.0000) −14.77(0.0000)
EMD-ARIMA 40.43(0.0000) 34.12(0.0000)
EMD-ANN 12.28(0.0000)

Th
re

e-
st

ep
-a

he
ad EEMD-SBL −15.61(0.0000) −6.67(0.0000) −5.43(0.0000) −8.51(0.0000) −26.60(0.0000) −9.66(0.0000) −13.28(0.0000)

EEMD-ARIMA 12.03(0.0000) 14.69(0.0000) 13.26(0.0000) −26.26(0.0000) −5.34(0.0000) 2.68(0.0074)
EEMD-ANN 4.28(0.0000) 0.53(0.5943) −26.53(0.0000) −8.97(0.0000) −9.75(0.0000)
EEMD-LSSVR −3.71(0.0000) −26.61(0.0000) −9.55(0.0000) −12.87(0.0000)
EMD-SBL −26.53(0.0000) −9.08(0.0000) −11.02(0.0000)
EMD-ARIMA 28.13(0.0000) 26.84(0.0000)
EMD-ANN 8.14(0.0000)

Fo
ur

-s
te

p-
ah

ea
d EEMD-SBL −13.50(0.0000) −8.19(0.0000) −7.47(0.0000) −9.16(0.0000) −22.82(0.0000) −9.20(0.0000) −11.95(0.0000)

EEMD-ARIMA 9.01(0.0000) 12.33(0.0000) 10.56(0.0000) −22.61(0.0000) −4.87(0.0000) 1.65(0.0000)
EEMD-ANN 7.16(0.0000) 2.21(0.0276) −22.88(0.0000) −8.87(0.0000) −10.07(0.0000)
EEMD-LSSVR −4.48(0.0000) −22.81(0.0000) −8.99(0.0000) −11.16(0.0000)
EMD-SBL −22.75(0.0000) −8.35(0.0000) −8.97(0.0000)
EMD-ARIMA 23.59(0.0000) 22.94(0.0000)
EMD-ANN 7.65(0.0000)

Fi
ve

-s
te

p-
ah

ea
d EEMD-SBL −11.66(0.0000) −7.11(0.0000) −7.58(0.0000) −8.11(0.0000) −20.36(0.0000) −7.73(0.0000) −10.71(0.0000)

EEMD-ARIMA 7.45(0.0000) 10.33(0.0000) 8.45(0.0000) −20.23(0.0000) −6.15(0.0000) 0.61(0.5417)
EEMD-ANN 4.39(0.0000) 0.89(0.3763) −20.29(0.0000) −7.29(0.0000) −6.69(0.0000)
EEMD-LSSVR −4.10(0.0000) −20.35(0.0000) −7.61(0.0000) −9.86(0.0000)
EMD-SBL −20.30(0.0000) −7.34(0.0000) −7.94(0.0000)
EMD-ARIMA 21.76(0.0000) 20.44(0.0000)
EMD-ANN 7.07(0.0000)

Si
x-

st
ep

-a
he

ad

EEMD-SBL −10.03(0.0000) −6.64(0.0000) −5.49(0.0000) −7.19(0.0000) −18.60(0.0000) −7.08(0.0000) −9.95(0.0000)
EEMD-ARIMA 4.77(0.0000) 8.88(0.0000) 6.33(0.0000) −18.51(0.0000) −4.75(0.0000) −0.48(0.0000)
EEMD-ANN 5.90(0.0000) 2.12(0.0342) −18.66(0.0000) −6.83(0.0000) −7.35(0.0000)
EEMD-LSSVR −4.75(0.0000) −18.59(0.0000) −6.94(0.0000) −9.46(0.0000)
EMD-SBL −18.54(0.0000) −6.39(0.0000) −7.20(0.0000)
EMD-ARIMA 19.20(0.0000) 18.64(0.0000)
EMD-ANN 5.78(0.0000)



www.manaraa.com

Energies 2018, 11, 1882 18 of 23

As far as the results of MCS on ensemble models, some interesting findings can be seen from
Table 12. First, in both markets, the EEMD-SBL-ADD survived in 22 out of 24 cases, showing that
the EEMD-SBL-ADD had a good generalization ability. Second, the EEMD-SBL-ADD achieved the
highest value of 1.0000 in 18 out of 24 cases, indicating that the EEMD-SBL-ADD was the best model
in most cases in terms of the MCS test. Finally, for the WTI market, the EEMD-LSSVR-ADD became
the optimal model at Horizons 3 and 6. The EEMD-SBL-ADD was even eliminated at Horizon 3,
although it was the best models at Horizons 1, 2, 4 and 5.

Table 12. The MCS test results by different ensemble models on WTI and Brent crude oil prices.

Model

Horizon

One Two Three Four Five Six

TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ TR TSQ

W
T

I

EMD-LSSVR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMD-BP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EMD-ARIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMD-SBL 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EEMD-LSSVR 0.0000 0.0002 0.0490 0.0490 1.0000 1.0000 0.0910 0.0910 0.0010 0.0010 1.0000 1.0000
EEMD-BP 0.0100 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EEMD-ARIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEMD-SBL 1.0000 1.0000 1.0000 1.0000 0.0490 0.0490 1.0000 1.0000 1.0000 1.0000 0.4216 0.4216

Br
en

t

EMD-LSSVR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMD-BP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EMD-ARIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EMD-SBL 1.0000 1.0000 0.3174 0.3174 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EEMD-LSSVR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEMD-BP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EEMD-ARIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
EEMD-SBL 0.5508 0.5508 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

From the above results and analyses, we can draw the following conclusion: (1) The single AI
models and statistical models usually could not achieve satisfactory results on raw crude oil prices
because of the nonlinearity and nonstationarity, although AI models outperform statistical models;
(2) The AI-based ensemble models significantly improved the forecasting accuracy when compared
with single models, owing to the strategy of decomposing the complex raw price into several relatively
simple components; (3) The proposed EEMD-SBL-ADD outperformed the compared models in terms
of MAPE, RMSE, Dstat, DM test and MCS test; (4) Regarding the decomposition tools of EEMD and
EMD, EEMD was advantageous compared to EMD for crude oil price forecasting; (5) The experimental
results demonstrated that SBL was very powerful for forecasting crude oil prices in both single models
and ensemble models.

4.5. Discussion

In this subsection, we will further discuss some characteristics of SBL for forecasting crude oil
prices, including the running time of the proposed approach, the impact of the lag order and SBL’s
parameter settings (scalar trade-off parameter and iteration number) on the forecasting accuracy.

4.5.1. Running Time

Running time is an important metric to measure the elapsed time of running a model. The less
the running time is, the better the model is. Since the input samples for different horizons are the same,
along with the number of components decomposed by EEMD and EMD being the same, we only
report the running time of one-step-ahead with EEMD-associated ensemble models. To show the
stability of the models, we repeat the experiments 10 times and then report the mean and standard
errors of the running time for both training and testing. Since all the models used the same components
by EEMD, we exclude the time of decomposition. We also exclude the running time of grid search for
LSSVR and just report the running time of building the training model with the optimal parameters.
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The experiments were conducted on WTI crude oil prices with lag = 6. The results are shown in
Table 13.

It can be seen that the EEMD-SBL-ADD takes only 2.0729 seconds and 0.0045 seconds to train the
model and test the samples, respectively, which is far less than the other models. Since the computation
of kernels is very time consuming, the EEMD-LSSVR-ADD takes the most time in both training
and testing phases. The standard errors of the EEMD-SBL-ADD, the EEMD-ARIMA-ADD and the
EEMD-LSSVR-ADD are less than 5% of the average time in both training and testing, showing that
their running time is stable. In addition, since SBL has the ability to resolve the multiple measurement
vector model, the running time can be further reduced by forecasting crude oil prices at several
horizons simultaneously.

Table 13. Running time (in seconds) of the models.

Model Training Time Testing Time

EEMD-SBL-ADD 2.0729 ± 0.0549 0.0045 ± 0.0001
EEMD-ARIMA-ADD 29.2742 ± 0.1746 0.2691 ± 0.0013
EEMD-ANN-ADD 17.3107 ± 3.4500 0.0988 ± 0.0006
EEMD-LSSVR-ADD 33.6742 ± 0.3268 12.2669 ± 0.1686

4.5.2. The Impact of the Lag Order

In the above experiments, we use a fixed lag order of six to compare the models, as suggested
by [43]. To further analyze the impact of the lag order on the proposed EEMD-SBL-ADD model,
we conducted one-step-ahead forecasting on WTI crude oil prices with the lag order in the range of
1–40. The results are shown in Figure 4. It can be seen that when the lag order is not larger than
six, the performance of the EEMD-SBL-ADD improves dramatically with the increase of lag in terms
of MAPE, RMSE and Dstat. Then, MAPE and RMSE slightly improve with the lag order increases
from 7–11, while Dstat keeps stable with the same lag orders. Furthermore, none of the metrics will
clearly improve any more when the lag order is larger than 11. The experimental results also confirm
that the lag order of six is good enough for forecasting crude oil prices. However, for the proposed
EEMD-SBL-ADD model, the performance can be further improved by selecting 11 as the lag order.
It can be seen that the proposed EEMD-SBL-ADD is capable of selecting a suitable lag order for
forecasting crude oil prices.

0 5 10 15 20 25 30 35 40

Lag order

0.5

1

1.5

0

0.01

0.02

RMSE

Dstat

MAPE

Figure 4. The impact of lag on WTI crude oil prices with one-step-ahead forecasting.
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4.5.3. The Impact of SBL’s Parameter Settings

The scalar trade-off parameter λ to balance sparsity and data fit and the maximum number
of iteration n in SBL have slight impacts on the forecasting performance. In most cases,
SBL with default values for these two parameters (e.g., λ = 0.0004 and n = 600) can achieve
satisfactory results. To further demonstrate this, we study the impact of these parameters for
forecasting crude oil prices. We conduct the experiments on WTI with one-step-ahead forecasting.
First, we fix λ = 0.0004 and run EEMD-SBL-ADD with a variable maximum number of iterations
n in the range of {50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. The results are shown in
Figure 5. Second, we fix n = 600 and run the experiments with variable λ in the range of
{0.0001, 0.0002, 0.0004, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}, and the results are shown
in Figure 6.

teration

0.6

0.75

0.9

50 100 200 300 400 500 600 700 800 900 1000

0

0.005

0.01

RMSE

Dstat

MAPE

Figure 5. The impact of the variable maximum number of iteration n along with fixed λ = 0.0004 on
WTI crude oil prices with one-step-ahead forecasting.
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0

0.005

0.01
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MAPE

Figure 6. The impact of variable λ along with the fixed maximum number of iteration n = 600 on WTI
crude oil prices with one-step-ahead forecasting.

It can be seen that with fixed λ = 0.0004, when the maximum number of iteration n varies
from 50–10,000, the results in terms of MAPE, RMSE and Dstat are all very stable, showing that the
proposed EEMD-SBL-ADD is not sensitive to the maximum number of iterations. Similarly, when n
is fixed at 600 and λ varies from 0.0001–0.002, the results also keep almost the same, while when it
varies from 0.004–0.128, the results gradually become worse. All the results demonstrate that the
proposed EEMD-SBL-ADD is not sensitive to the parameter settings. Even if we use default settings
(e.g., λ = 0.0004 and iteration = 600), it can achieve satisfactory results.



www.manaraa.com

Energies 2018, 11, 1882 21 of 23

5. Conclusions

Accurate forecasting of crude oil prices is a challenging task because of its attributes of nonlinearity
and nonstationarity. Traditional methods including statistical methods and AI-based models usually
cannot achieve satisfactory results when the forecasting is performed on raw crude oil prices.
Motivated by the strategy of “divide and conquer”, to cope with this issue, this paper proposes
a novel model integrating EEMD, SBL and addition (namely EEMD-SBL-ADD) for forecasting crude
oil prices, following the “decomposition and ensemble” framework. In the phase of decomposition,
EEMD is used to decompose the raw price into several components, and each component shows
simpler characteristics compared with the raw prices. Then, this paper uses SBL to forecast each
component individually. Finally, the predicted results of all components are aggregated by the simple
operation of addition. To demonstrate the performance of the proposed model, we compare it with
some state-of-the-art methods on crude oil prices from the popular markets of WTI and Brent with
different horizons. This is the first time that non-kernel trick SBL has been applied to forecasting
crude oil prices. From the experimental results, some conclusions can be drawn: (1) as an AI model,
SBL outperforms other models in forecasting crude oil prices with raw data, demonstrating its power
for time series forecasting; (2) the AI-based ensemble approaches are superior to their counterpart single
models, indicating that the decomposed component is capable of better representing the characteristics
of crude oil prices; in addition, EEMD outperforms EMD for decomposition; (3) the EEMD-SBL-ADD
outperforms any other competitive models in terms of the evaluation criteria, showing its promise for
forecasting crude oil prices.

One limitation of the proposed EEMD-SBL-ADD model is that all components are predicted
using SBL. In fact, among the components, each component shows some different characteristics.
For example, some components are of high frequency, while others show low frequency. An ideal
model should use different predictors for high- and low-frequency components, respectively. This is
one of the extended research directions in our future work. Another interesting direction is to apply the
proposed approach to forecasting some other forms of energy, such as wind speed and electricity load.
We will also use SBL to perform multivariate forecasting on crude oil prices and to find significant
measures to analyze time-varying persistence in crude oil prices, due to the sparsity of SBL.
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